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Abstract-The fully developed laminar and turbulent flows in curved ducts of rectangular cross-section 
are simulated numerically. The laminar How is simubdted with direct solution of Navier- Stokes equation 
and its results are compared with other nllmericai and cxper~mental results. The turbulent Row is sirn~l~tted 
with large eddy simulation (LES), in which Schumann’s SGS-modelling is used. The computational results 
are presented and compared with Hur’s (1990) results, which is accomplished by means of the statistic 

turbulent modelling. 

1. INTRDDUCTION 

THE FLOWS in curved ducts of the rectangular cross- 
section are encountered in many engineering 
problems, for cxamplc, heat exchangers, fluids trans- 
port piping system, chemical reactors, meandering 
rivers and other apparatus, equipment or devices. So 
they are a topic of great interest to the engineering 

community. 
Flows in ducts with various cross-sectional shapes 

have been the focus of numerous investigations in 
the past. Using the perturbation method. Dean [l-2] 
solved analytically the NS equation for fully-developed 

laminar flow in a curved pipe. He found that the 
dynamical similarity of the fiow depends on a dimen- 
sionless parameter, which is now known as the Dean 
number De (= ReJ(a/R)), where Re is the Reynolds 
number with bulk velocity, a the radius of pipe, and 
R the radius of curvature, In recent years, the use 
of numerical techniques to solve NS equations has 
considerably extended the knowledge of curved flow. 
In order to solve the equations of motion for fully 
developed laminar flow in a curved duct of rectangular 
cross-section, many numerical procedures have been 
reported [3-81. 

Most flows encountered in many engineering prob- 

lems, are turbulent. There were numerous inves- 
tigations of the turbulent Bow in straight and curved 
ducts. The results of investigation can be individed 
into two broad categories : experiments and numerical 
predicts. The case of the developing turbulent flow in 
curved ducts has been investigated in detail [9914] 
through experiments and calculations. The com- 
putational analysis of the developing turbulent flow 

in curved square ducts has been also conducted ]15- 
181. We note that most numerical predictions arc made 

with the solution of the three-dimensional time aver- 
aged Navier-Stokes equations incorporating a tur- 
bulent model based on two-equation or algebraic 
stress model. The flow is a developing turbulence. 
Recently, Hur et ul. [ 191 have investigated numerically 
the fully developed turbulence in straight and curved 
ducts. 

Recent advances in compu~dtional fluid dynamics, 
however, have opened a new way to fully three-dimen- 
sional computation of this type of flow. This pro- 

vides the possibility of detailed and accurate flow 
predictions. 

Because of the complexity of the flow in curved 
duct, it is necessary to simplify the mathematical 
description of this flow. Here a mathematical model 
of the fully-developed flow is used. Although it may 
be evident that this model cannot serve as a model of 
the flow in a real curved duct of rec~dngular cross- 
section. the results of simulation justify a qualitive 
analyses of the mechanism of main velocity redis- 

tribution due to the secondary flow in curved channels 
on the basis of this relatively simple and well-docu- 
mented flow case. This flow case allows for the 
numerical solution of the complete unsteady NS cqua- 
tion in laminar flow and the filtered NS equation 
(basic equation of LES) for turbulence without 
extremely high computer costs. So that, in this work, 
as a first step of numerical simulations of turbuien~e 
in curved ducts, the fully-developed flow in curved 
ducts of rectangular cross-section is investigated with 
the numerical simulation. The present work consists 
of two parts : numerical simulation of the laminar flow 
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NOMENCLATURE 

A,>, trigonal matrix of order II? .Yl, x2, -y3 coordinations of the orthogonal 
AA,, AA,, AA, side surface elements of grid curvilinear coordinate system 

De Dean number P volume 

4 hydraulic diameter of duct section Ap grid volume 

E kinetic energy, ~(u2+uz+w2) Api grid volume staggered in 

g SGS kinetic energy, :(12+8-tB2) i-direction. 

e,, e,, e3 unit vectors in the three directions 
of the orthogonal curvilinear coordinate 
system 

Greek symbols 

.f 
A 

volume averaged (filtered) value of.{ 
length scale of grid, $h,h2h,Ax,AxzAx,; 

f z/, 

Laplace operator 

P dynamic viscosity 
V 

G(rlr’) filter function 
kinematic viscosity 

h,, hz, h3 Lame coefficients of the orthogonal 
VT ‘turbulent’ viscosity 

curvilinear coordinate system 
P density ; distance 

N,, Nz, iv, numbers of cells in three 
ri, components of stress tensor {r) here, i 

indicates the direction normal to the 
directions surface in which the component lies and 

P pressure 
Re Reynolds number, &L/v 

j represents the direction of the 

R radius of inner wall of curved duct or 
component. 

channel 

S, components of strain rate tensor Other symbols 

u, bulk velocity V nabla operator 

01, L’?., 4 velocity components in an ( * ) time-averaged value 

orthogonal curvilinear coordinate system (? ) Reynolds’ ffuctuation. 

dPlj 

an,; 
velocity ~7, averaged over grid volume 

I velocity t; averaged over side-surface Superscripts 

A4 + positive direction 
I 

B,, vz, 63 Reynolds’ velocity fluctuations - negative direction. 

with direct solution of Navier-Stokes (NS) equations 
and of the turbulent flow with large eddy simulation 
(LES). 

2. BASIC EQUATIONS AND NUMERICAL 

METHOD 

The continuity equation and Navier-Stokes equa- 

tions are satisfied in the viscous flow, for both laminar 
and turbulent cases. Here it is assumed that the fluid 
is incompressible and Newtonian. The convection, 
which is produced with difference of temperature, is 

not considered, and so the equation of energy is 
ignored. 

With the large eddy simulation method, all physical 
quantities J e.g. velocity, pressure, etc., are divided 
into two parts : large scale partfand small scale part 
J’, Here the box filter is used : 

1 A A. 
____ --‘<xi<2 
A,A,A, 2 2 

G(rlr’) = (1) 
0 Ix,I > $ xi = (r-r’), 

The filtering value offis denoted as.fand calculated 
from 

s 

f= +r’ 
G(r/r’) *f(r’)dr’ (2) 

x 

and 

f =.f+Y. (3) 

f is called large scale part off‘and J” its small scale 
part. After the definition of the box filter we have 

.?z = 7g +f”g,. (4) 

It is easy to prove, that the value off’g’ will be 
0(6*), if the variations of ,f and g are smooth (for 
example, the variations of the velocities in the laminar 
flow) ; and it will be comparable with 0( 1) if f and 9 
vary suddenly. The basic equations of LES can be 
obtain by means of filtering NS-equation and are writ- 
ten in the following form : 

Continuity equation 

(AA :AA:~_AA~A~~;~~;)+(AA:AA!z~;-AA;AA;vz) 

+(AA:““~,,,-AAjAA%J = 0 (5) 

c L 

(i== 1,2,3). 
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Momentum equation 

_ f (AA,?AA:~_AA,AA;~) 

s,, = 2 1 for i=i 

1 co, 1 i?Ll, L), dh, 2; ah, 
S,,=hz+h a.\- - ~~~ mP-hhx i#j 

I I 1 1 0; ax, , , , 

wherei= 1,2,3andj= mod(i,3)+l,k = mod(i+l, 

3)+ I. 
Because of the sudden variation of velocities in the 

turbulent flow the value AA$$ cannot be ignored. To 

closure the equation (2) in the numerical simulation 
of turbulent flow, we need model for terms : ‘A m ‘~,~k, 
which are introduced with the fine-structure of tur- 
bulence. These terms are known as quasi-Reynolds 
stresses or subgrid scale (SGS) stresses, because they 
reflect the exchange of the momentum between differ- 
ence parts in fluid. Here Schumann’s model is used, 
which was developed on the basis of the vortex-vis- 
cous conception and the statistic turbulence theory by 
Schumann and described in detail in his Ph.D. Thesis 

WI. 
Equations (1) and (2) are basic equations of tur- 

bulent flow in LES. In the laminar flow the terms v:vj 
in equation (2) are of second order of grid-scale and 
can be ignored ; then the equation (2) becomes integral 
form of NS equation and can be used as principal 
equation of the numerical simulation of laminar flow. 

Here AA: and AA,- are the sideward surfaces with 
subscript i denoting the normal direction of the sur- 
face and the superscripts + and - denoting the posi- 
tive and negative side surfaces of the grid volumn 
respectively. 

Figure I shows the geometry and the coordinate 

(b) AA; 
AA; I 

AA; 

AA; 

FIG. 1. Sketch of flow field and volume of grid 

system for a curved duct with rectangular cross- 
sections. R is the curvature radius of the inner wall. 
x, is the coordinate along the curved inner wall of the 
duct. x3 is the coordinate normal to the inner wall and 
.x2 is the cross direction, which is parallel with inner 
wall and normal to the two other coordinates I,, .x1. 
They constitute a right-hand coordinate system. 

Boundary condition 
Because the fully developed flows are considered, 

so that in x, direct, there is periodic condition for 
velocities ZI,, L>~, ~1~ and fluctuating p,, which is a part 
of pressure p and it satisfies 

P = PO-tPI (8) 

where p,, = (@O/ax,)*x, and ++,/a,~, is a given 
constant. On the wall, the adherent condition is used, 
e.g. V = 0 on the wall. Besides, ap/& = 0 on wall is 
assumed, n is the normal direct of the wall. 

In the turbulent flow, when the point, at which the 
velocity is defined, is at the wall, then the velocity is 
equal to zero. Otherwise the logarithmic law is used. 

The initial velocity field should satisfy the con- 
tinuous equation. In order to solve equations (2) and 
(3), the following techniques are used: the finite 
difference method in time and the Marker and Cell 
(MAC) method, the spectral method for solving 
Poisson equation of the pressure. 
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It must be pointed that the transformation in the 
.x, direction is Fourier transformation and can be 
completed directly with Fast Fourier Transformation 
(FFT). The transformation in the .I-? direction is 
Gauss-Chebyshev transformation and cannot be 

complctcd with FFT, but the FFT can bc used also 
after reordering the cocliicicnts of CC trans- 
formation. The detailed process is described by Su 
[31]. 

3. NUMERICAL RESULTS AND CONCLUSION 

The above presented method is used to calculate 
three fully developed larninar flows in curved ducts 
with different rectangular cross-sections. The radius 

of central line of curved duct is 5.5L. the sides ofcross- 
section arc (I) 0 = L. h = I_: (2) 11 = 2L. h = I.; (3) 
u = 0.5L, h = f., where u is width of cross-section 
and h is its height. L is a characteristic length. The 
Reynolds number is defined with the characteristic 
length L, the kinematic viscosity v and the bulk vel- 
ocity U,,,. Dean’s number is defined with formula 

De = Dh U,,,/v, where Dh = 2ab/(a + b) is the hydraulic 
diameter. The number of grid points in cross-section 
is 32 x 32. 

At first, the flow in a curved duct with square cross- 
section is discussed. The contours of the axial flow 
velocity and streamlines of the secondary motion with 
different Dr numbers arc displayed and compared 
with DC Vriend’s results in Fig. 2. It is easy to see that 
the distribution of the axial tlow velocity is skcwcd in 
the radial direction due to the curvature of the duct. 

R. FRIFDKIC‘H 

With the increase of the bulk velocity (or the Dean 
and Reynolds numbers), the position of the maximum 
velocity is shifted to the outer wall. It appears twice, 
namely to the right and left of the symmetry plane. 

When the Dean numhcr is low (e.g. less than 101) 
the pattern of the secondary flow contains two cells. 
symmetrically arranged with rcspcct to the J’ = 0.5- 
plane. In this case, the contribution of the secondary 
flow to the distortion of the axial velocity consists 
of two parts. namely a radial and a cross velocity 
component. When a tluid particle moves along a 
curved path, it is driven to the outer wall by a cen- 

trifugal force. In the central part of the duct. the 
largest radial velocities appear, with magnitudes as 
large as h 10% of that of the axial velocity. In the 
vicinity of the side walls. however. the centrifugal 

forces arc reduced by viscosity ctfects and can thus 
be compensated by continuity effects. The result is a 
secondary flow towards the inner wall on both side 
walls. Thus the vortex pair of secondary flow is formed 
in the cross-section. The fluid particles move from the 
center of the duct to the Icft- and right-corners of the 
outer wall. then along the side walls to the inner wall, 
and finally return to the central plane along the inner 
wall. The secondary flow brings the momentum of the 
fluid from the center to the outer side of the duct and 
changes the distribution of the axial velocity. The 
tendency of the secondary flow is to reduce the cross- 
avcragcd axial velocity near the inner wall and to 
incrcasc it near the outer wall. 

As the Dean number increases. however. the con- 
vectivc transport of momentum away from the side 
walls is mainly radial, outward in the central part of 

FK. 2. Comparison between the present result and De Vriend’s result: left, present 
De Vriend’s result; top, &J = 94.8 ; below, IIr = 107.6. 

results ; right. 
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FIG. 3. Comparison between the present result (left) and Hur’s result (for aspect ratio a/h = 2.0) (top, 
contours of main velocity; below, streamlines of secondary flow). 

FIG. 4. Comparison between the present result and Sugiyama’s result (for aspect ratio u/b = 2.0, 
Re = 575.37, De = 150.45). 

the cross-section and inward in the side part of the 
cross-section, such that there is a net outward momen- 

tum transport. With the side shear stress as a damping 
factor, this net outward transport gives rise to a 
retarded outward expansion of the low-velocity region 
near the inner wall. The velocity peak is shifted against 
the outer wall, where it is partly damped by viscous 
forces. As a consequence. the axial velocity distri- 
bution tends to be skewed outwards and hence radial 
convection causes a flattening of the cross profile 
of the axial velocity, the fluid convected from further 
inside giving rise to a momentum deficit in the central 
part of the cross-section and the fluid convected from 
further outside causing a momentum surplus in the 
side part. 

In flows of curved rectangular ducts. similar 
phenomena can be also found, see Figs, 3 and 4, 
respectively. In the first case, the ratio of width a to 
height b of the cross-section is 2. The result for this 
case is compared with Thangam and Hur [22] and the 
agreement is satisfactory (see Fig. 3). The present 
result corresponds to Sugiyama et at.‘s [23] exper- 
imental result (see Fig. 4). In the second case, the 
aspect ratio is 0.5. The comparison with experimental 
data reported in ref. [23] shows good agreement (see 
Fig. 5). 

Outline qf computational example. The large eddy 
simulation of the fully developed turbulence in a 
curved duct was carried out under the parameters 
listed in Table I. 

FE. 5. Comparison between the present result and Sugi- 
yama’s result (for aspect ratio a/b = 0.5, Re = 656.71, 

De = 221.20). 

Table I. 

Case I 

Reynolds number 
Rq, = HUL;\ 69 000.0 

Comp. domains 
Length 4N 
Height H 
Width B=H 

Ratio of radius to height of duct 
Grid numbers 

N, x hi, x N, 64x32~32 
Time-step number 42 000 
CPU (hr) 22 
Time increment 

At = (ATU,,‘H) 0.010 

case I I 

69 000.0 

4H 
H 
f3 = i-I 

256X64X64 
21800 
I&2 

0.005 
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The numerical integration of the basic equations 
leads to ‘wiggles’, which change the pattern of the 

secondary flow in the cross-section of the curved duct 
and lead to unphysical distributions of the mean axial 
velocity. A consequence of these wiggles is that two 
small recirculation zones disappear. The ‘wiggles 
phenomenon’ occurs also in that of other authors [24, 

251. From the discussion in Roache’s book (1982) it 
follows that ‘wiggles’ are an inherent feature of central 
difference schemes in space and are due to insufficient 

resolution. Therefore we try an upwind difference 
scheme. However, the experiences show : the ‘wiggles’ 
cannot be eliminated by the upwind difference scheme 
with high-order accuracy because it has too small 
damping; when an upwind difference scheme with 

second-order accuracy is used, the ‘wiggles’ and the 
turbulence are eliminated simultaneously due to the 
too large damping of the difference scheme. Usually, 
finer grids help to reduce the effect of ‘wiggles’. 

A mixed difference scheme with second-order accu- 
racy is developed [2l]. It can be written in the fol- 
lowing form : 

L=(I-O)xL’Z+OxL; (9) 

where L represents a finite difference operator, sub- 
script 2 indicates second-order accuracy and super- 
scripts u/c upwind-/central-schemes, respectively. The 
parameter 0 is defined by : 

o = min 

{ 
l,o _V~ 1-2 x.f”+.f’lI 

’ If ,l+2xl.f”I+l.f,I I (10) 

where ,f is one of the time averaged velocity 
components. The selection depends on which velocity 
component is calculated in the difference scheme. It is 
clear that the value of 0 will be close to I .O if ‘wiggles’ 
are strong, and the upwind difference scheme will play 
a leading role in the mixing scheme. If ‘wiggles’ are 
weak, the central scheme will play the main role. In 

the present numerical simulation the ‘wiggles’ 
are overcome at last. Therefore the central differ- 
ence scheme is used in fact when the ‘wiggles’ arc 

overcome. 
It must be noted that, till now, we have not found 

any reported experiment which treats the fully 
developed turbulence in curved ducts, despite there 
being many experiments which treat developing flow 
in curved ducts, However. the fully developed flow 

has been predicted numerically by Hur ef al. [19] with 
a turbulence model. Therefore, the following results 
are compared with Hur’s numerical results. 

Distribution of‘ the stutisticall,v amraged docities. 
The fully developed averaged turbulent flow in a 
curved duct is steady. The contour of (u) in cross- 
section of duct is shown in Fig. 6(a), from which one 
can find that the mean turbulent flow is similar to the 
laminar flow (see Fig. 2). As DC Vriend [5] pointed 
out, there are points of qualitative resemblance 
between the two flow types. Firstly, in turbulent flow 

(a> (W 

FIG. 6. Comparison of pattern of the secondary flow in 
curved duct: (a) contour of (u} in cross-section ; (b) vectors 
of velocities in cross-section ; (c) streamline of the secondary 
flow. Note: the right in (a) and (c) are Hur et ul.‘s results 

[19], others are present numerical result. 

the convective exchange of momentum due to the 
velocity fluctuations can be modelled using the anal- 
ogy of molecular diffusion (Boussinesq hypothesis) 
and the coefficient of turbulence viscosity in such 
models, though varying over the flow field, can be 
considered as a constant and therefore it qualitatively 
corresponds to the molecular viscosity. Some 
researchers suppose that the turbulent viscosity is 5& 
100 times the molecular viscosity. In addition, both 
laminar and turbulent flow in curved conduits show 
the characteristic helical flow pattern, caused by the 
same mechanism in either case. Besides, the redis- 
tribution of the main velocity along a bend shows the 
same features for laminar and turbulent flow. The 
present results support the above viewpoints, and, in 
addition, the above-mentioned cases will be between 
490 and 980 and the corresponding equivalent Dean 
number will be between 88 and 176. Comparing the 
present result with Hur’s result [19] (see Fig. 6(a)), it 
can be confirmed that both results agree qualitatively. 
The positions of maximum value of (LL) shift out- 
wards and sidewards. 

Secondary,flow in the curwd square duct 
As already mentioned, there is a mean secondary 

flow in the fully developed turbulent flow of a curved 
duct. There are some points of qualitative resemblance 
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between laminar and turbulent flows in curved ducts, 
namely where the origin of the mean secondary flow 
is concerned. The streamlines and projections of the 
mean velocity vector into a cross-section and a com- 
parison between them and Hur et al.‘s result [19] is 
shown in Fig. 6(c), from which one can conclude that 
the mean secondary flow in the curved duct is well 
reflected in the present numerical simulation. 

It should be emphasized that the intensity of the 
mean secondary flow is small and the small recir- 
culation region near the outer wall contains even 
weaker fluid motions. which are easily eliminated by 
a careless computation. One can say that it is an 
important criterion of correctness of the numerical 
simulation of such flows when the secondary motion 
is described correctly. Because of the different mech- 
anisms that generate secondary flows in straight and 
in curved ducts, the distribution patterns of time- 
averaged main velocity (u), cross velocities (z!}, (M’), 
turbulent kinetic energy (E) and components of the 
Reynolds stress tensor (iiti), (E), . . are different. 

From Fig. 6 one can find that the pattern of the 
time-averaged main velocity in a curved duct is sym- 

< 1’ > 

metrical with only one symmetry axes. Besides, the 
position with the maximum main velocity moves out- 
ward and sideward due to the centrifugal effects. As 
we know, the secondary flow leads to the exchange of 
fluid momentum and turbulence kinetic energy 
between the different parts of the curved duct and the 
distributions of averaged velocities, turbulence kinetic 
energy and Reynolds stresses. In Fig. 7 the contours 
of Reynolds stresses (E), <rX), (I%), (z.Z), <&G>, 
(zZK+, turbulence energy (8), in the cross-section of 
the curved channel and the curved duct are compared. 
Because of the 1Insymmetry of their distributions in 
the z-direction, the profiles along both y- and z-direc- 
tions are shown. From these figures of (&2), (E}, 
(GG}, (I!?), one finds that the intensity of the tur- 
bulence kinetic energy is strengthened in the vicinity 
of walls, especially in the vicinity of the outside wall 
due to the effect of the duct curvature. However the 
shape of these distributions is not different essentially 
from that in the straight duct. Comparing those pic- 
tures of (t?t;), (z%), (z%), with that in the straight 
duct, the essential discrepancy can be seen clearly. 

It is clear too that the distribution of components 

< ‘66 > 

FIG. 7. Comparison of contours; left: in straight duct ; right: in curved duct. 
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of Reynolds stress tensor are affected not only by 
curvature of the duct, but also by the side walls. It 
can be confirmed that the changes of distribution of 
(u‘u‘). arc reduced by the secondary flow. Com- 

paring their contours (zX>, (65). (ZG), (.@ in the 
curved duct and those in the straight duct, the contour 
of (K-(KG) is displayed in Fig. 7. It should be 

pointed out that the value of (zX-( KY?) is small and 
near zero in the central part of the straight duct. 
However, the unsymmetry of the contour in the 
curved duct is produced by the duct curvature. 

be found that the distinct structure with inclination 
angle (-25 ) to the adjacent wall in the contour of d 
at _V = H/4. These contours have denser structure near 
the outside wall than that near the inside wall. This 

means the turbulence is strengthed by the convex wall 
and weakened by the concave wall. Figure 9 shows 
the contours of three components of instantaneous 
vortex vector and the abovementioned phenomenon 
was clearly displayed too. 

Comparing the results of LES in the curved duct 
and in the straight duct. it makes clear that the change 
of the pattern of the secondary flow and the dis- 
tribution variations of mean velocities and Reynolds 
stresses are reduced not only by curvature of duct or 
channel but also by the existence of side walls. It can 
be concluded that the change in the turbulence model 
by means of introducing some special coefficients with 
curvature influence can reflect the action of curvature 
only partially and be available only to simple tur- 
bulent flow, for example in a 2D curved channel. 
However, the present large eddy simulation method 
can rcflcct the influence of curvature of the duct as 
well as the side walls. The present example shows that 
the method o1‘LES is a gcncral method for numerical 

simulation of complex turbulent flow. 

Figure IO shows the projection of instantaneous 
fluctuate velocity vector into longitudinal sections at 
different positions (i.e. different planes with 
1’ = const.). The distinct vortex structures are dis- 
played in Fig. 11, which shows the projection of instan- 
taneous fluctuate vorticity vector into longitudinal 
sections at the same positions as in Fig. 10. One can 
find the turbulence motions of fluid are not so dis- 
orderly as one thinks. There are some surges and some 
circular structures are displayed faintly. These surges 
and faint circular structure are unstable and varied. It 
can be confirmed from these figures that the coherent 
structure exists in the fully developed turbulence of 
the curved duct and should be researched further. 

Instuntcineous structurc~ of turhuhcr itI tk cwred duct 

The fully developed turbulence in the curved square 
duct is complex turbulcncc and the analysis of tur- 

bulence structure is a difficult and complex job. Here 
only a primary analysis was carried out. 

Figure 8 shows the contours of instantaneous fluc- 
tuate velocity 2; at different longitudinal sections (i.e. 
(_Y, :)- plants or J’ = const. plants) rcspcctively. It can 

In the fully developed turbulent flow in the curved 
duct one can find some large vortex lines (tubes), some 
of them are displayed in Fig. 12, where one sees that 
there are some horse-shoe shape vortex lines (tubes) 
near both convex and concave walls. However, Fig. 
12 shows sonic ring or half-ring vortex lines and most 
of them concentrate in the outside corners (i.e. near 
the concave wall). This phenomenon has not been 
found in the fully developed turbulent flow in the 
straight duct. Besides, the angles between the planes, 

in which the vortex lines lie, and their adjacent wall 
are near 90 : they are not near 45” as in the straight 
duct. 

W 

FG. 8. Contours of instantaneous fluctuate velocity 6: (a) y = H/4; (b) J’ = H/8. 
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FIG. 9. Contours of instantaneous lluctuate vortex : I?,. (a) li, : (b) L?,; (c) v?,. 
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FIG. 10. Projection of instahtaneous fluctuate velocity vector into (x, z)-planes : (a) y = H/4; (b) y = H/2. 
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FIG. 11. Projection of instantaneous fluctuate vorticity vector into (xx, z)-planes : (a) y = [f/4; (b) y = H/2. 

4. CONCLUSION 

From the present discussion the following con- 
clusions can be obtained : 

I. The presented numerical data correctly reflect the 
influence of duct curvature on the distribution of axial 
flow and on the pattern of secondary motions. The 
relation between the Dean number and the pattern of 
the secondary flow is also correct and confirms the 
underlying physical mechanisms ; 

2. The three laminar flows in curved rectangular 
ducts with different aspect ratios have yielded results 
which agree well with experimental data reported in 

the literature ; 
3. In the numerical simulation there are some prob- 

lems, which can influence or change the final results 

seriously. The ‘wiggles phenomenon’ is an important 
example: the pattern of secondary flow is changed 
seriously and the distribution of time-meaning vel- 
ocity is not rational physically. In the present com- 
putation the ‘wiggles phenomenon’ is overcome finally 
with a mixing scheme. The numerical results show the 
effects of the duct curvature correctly. 

4. The comparison between the present and Hur 
et ui.‘s results [ 191 of the time-average velocity and 
secondary flow show that the method of LES and 
the SGS-model are available to simulate numerically 
complex turbulences such as that in a curved duct. 

5. The curvature influence of the turbulence is not 
so simple and cannot be described with a simple factor 
as in Bradshaw’s model [26], because there are also 
some other factors such as the existence of side wall 
and so on. As the grids are small enough, the results 
of LES can reflect the curvature-effect automatically. 

6. Some instantaneous structures of the turbulence 

in the curved duct are displayed, and make clear that 

there is some coherent structure in the turbulence, 
which should be analysed further. 
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